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Abstract  

The Navy is currently implementing the open-architecture framework for developing 
joint interoperable systems that adapt and exploit open-system design principles and 
architectures. This raises concerns about how to practically achieve dependability in 
software-intensive systems with many possible configurations when: 1) the actual 
configuration of the system is subject to frequent and possibly rapid change, and 2) the 
environment of typical reusable subsystems is variable and unpredictable. Our preliminary 
investigations indicate that current methods for achieving dependability in open 
architectures are insufficient. Conventional methods for testing are suited for stovepipe 
systems and depend strongly on the assumptions that the environment of a typical system is 
fixed and known in detail to the quality-assurance team at test and evaluation time. This 
paper outlines new approaches to quality assurance and testing that are better suited for 
providing affordable reliability in open architectures, and explains some of the additional 
technical features that an Open Architecture must have in order to become a Dependable 
Open Architecture.  

Introduction  

The Navy’s Open Architecture (OA) is defined to be a multi-faceted strategy 
providing a framework for developing joint interoperable systems that adapt and exploit 
open-system design principles and architectures (DAU, 2007b). The objective of supporting 
adaptable systems has significant implications for quality assurance. OA approaches often 
involve: (i) a public, non-proprietary architecture that can accept plug-in components and be 
transparent to changes (e.g., the system should continue to work if selected components or 
connectors are replaced by different components or connectors), and (ii) an architecture 
whose purpose is to make explicit the common interfaces (e.g., POSIX, CORBA, etc.). Main 
goals of Navy’s OA include minimizing total cost of ownership, increasing competition, 
achieving reuse, optimizing systems, and developing systems that support evolution.  

This paper explores some test and evaluation implications, outlines an approach for 
providing affordable quality assurance in the kind of dynamic environment that open 
architectures are intended to accommodate, and evaluates the current state of some 
technologies that support the new approach.  

The Navy's requirements to implement OA are set forth in several Department of 
Defense (DoD) and Department of Navy (DoN, 2004, August 5) policy documents (e.g., “The 
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Defense Acquisition System” (DoD, 2003, May 12), “Guidance Regarding Modular Open 
Systems Approach (MOSA) Implementation” (DoD, 2004, April 5), “Naval Open Architecture 
Scope and Responsibilities” (DoN, 2004, August 5), etc.). In the past the Navy has acquired 
systems that, although they performed their functions and tasks exceedingly well, were 
unique in their designs and engineering. Indeed, they required unique parts, equipment, and 
services to support them, were supported by a limited number of suppliers and became 
unaffordable to maintain. There are numerous instances, moreover, in which a system or 
platform was scrapped rather than upgraded or modernized because the cost to do so had 
become prohibitive. Test and evaluation account for an appreciable part of the cost for 
system upgrades. This paper explores how open architecture principles can be extended 
and applied to reduce these costs and to make Navy systems more agile.  

Business issues are pushing the Navy to shift its development processes towards an 
open-architecture paradigm. In an era of strenuous competition for dollars, the Navy is 
continuously challenged with budget decisions. Inflexible acquisition strategies lock the 
Navy into single systems and vendors that limit the service's options for competition and 
innovation. Limited competition impedes innovation, while OA provides options for greater 
competition and inclusion of innovators. Cost of procured systems is due to maintenance as 
well as development expense. Stovepiped processes lead to acquisition of systems across 
the Navy with duplicated capabilities. For example, every ship (class) had a unique combat 
system. Currently, limited asset reuse takes place across the enterprise without open 
architectures. However, there are few enterprise processes to foster integration in a legacy 
environment. To achieve rapid fielding of new technology and capability for the Fleet, the 
Navy’s business model has to change from the classic acquisition system to a process that 
supports Rapid Capability Insertion. Open architecture meets those needs by shortening 
cycle-times for getting capability to the warfighter when needed. The use of modular 
systems to facilitate technology refreshment and obsolescence mitigation is a key aspect of 
OA. Increased competition and innovation are possible through changed business practices 
enabled by OA.  

Many technical issues are also motivating the Navy’s change towards open 
architectures:  

 Procurement of monolithic systems using legacy processes produces incompatible 
systems that are not interoperable. 

 Software closely coupled (integral) to the computing hardware platforms is not 
reusable.  

 Special-use code and modules that cannot be reused across the Navy are artifacts 
of the legacy approach to systems acquisition. 

 Proliferation (and resulting lifecycle cost growth) of hardware and software baselines 
results from upgrade processes in closed systems.  

Consequently, there has been much attention to cultural issues and acquisition 
policies to facilitate adoption of an open architecture paradigm for Navy systems.  

This paper addresses a complementary effort to identify current weaknesses and 
gaps in the state of the knowledge with respect to assuring reliability of DoD/DoN systems 
developed according to open-systems principles, and to develop or adapt new methods for 
overcoming those weaknesses so they can be used in Navy open architectures. We are 
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studying weaknesses in current best practices with respect to the context identified above, 
and are performing research to extend and develop methods to overcome those 
weaknesses.  

Our preliminary investigations indicate that current methods for achieving 
dependability in open architectures are insufficient. The main problem is how to practically 
achieve dependability in software-intensive systems with many possible configurations when 
the actual configuration of the system is subject to frequent and possibly rapid change, and 
the environment of typical reusable subsystems is variable (used in many platforms) and 
unpredictable (mission-dependent). This is a major problem for practical development 
because real development projects depend heavily on software testing, which is strongly 
context-dependent. Conventional methods for testing depend strongly on the assumptions 
that the environment of a typical system is fixed and known in detail to the quality-assurance 
team at test and evaluation time. These assumptions are quite reasonable for stovepipe 
systems but are not valid for open architectures. A component in an open architecture 
should be reusable not only across current classes of ships but also across future platforms 
that are yet to be designed—those that belong to different services, and perhaps even to 
coalition partners. This set of contexts is very large in practice, is open-ended, and cannot 
even in principle be known in detail to the test and evaluation team.  

This paper outlines new approaches to quality assurance and testing that are better 
suited for providing affordable reliability in open architectures, and explains some of the 
additional technical features that an Open Architecture must have in order to become a 
Dependable Open Architecture, i.e., one that can support reuse and rapid reconfiguration 
via module swapping (without compromising reliability) while remaining economically viable 
at the level of individual systems and reducing total ownership cost for the enterprise. This 
requires linking the architecture with: 1) specific dependability requirements, 2) certifiable 
technical standards for each interaction path, 3) specialized types of testing, as well as 
combining that testing with other kinds of computer-aided quality-assurance methods. The 
paper explains the concepts behind the approach and why it is expected to work as claimed. 

Navy’s Vision of Open Architecture 

The Navy Open Architecture (Navy OA) is a Navy initiative for a multi-faceted 
strategy providing a framework for developing joint interoperable systems that adapt and 
exploit open-system design principles and architectures (DAU, 2007a, DAU, 2007b). This is 
a systems design approach consistent with several governmental concepts and initiatives, 
such as the Open Architecture Computing Environment (OACE) (Naval Sea Systems 
Command, 2007), FORCEnet (FORCEnet, 2007a), and the Modular Open Systems 
Approach (MOSA) (Open Systems Joint Task Force, 2007). OACE seeks to ease the test 
and evaluation burden by limiting hardware choices to certain approved possibilities. 
FORCEnet is an operational concept that can benefit from realization of OA goals for its 
implementation. MOSA is a joint-acquisition approach that shares many of the goals of the 
Navy’s OA effort.  

The OACE (NSWCDD, 2004, August 23a, NSWCDD, 2004, August 23b) aims to 
implement open specifications for interfaces, services and supporting formats. It enables 
software components to work across a range of systems and interoperate with other 
software components on local and remote systems. Thus, the OACE framework includes a 
set of principles, processes, and best practices. The OACE is a surface-Navy approach to 
setting technical standards for shipboard systems. It shares many of the objectives of OA, 
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but does not address business processes that deal with those objectives, and does not 
apply to submarines, aircraft or C4I systems. The OACE consists of a set of documentation 
describing an infrastructure of technologies supported by a reference architecture. This 
infrastructure includes cable plant, cabinets, network components, processors, operating 
systems, adaptation and distribution middleware, frameworks, resource management, 
common services (e.g., system server applications such as web servers), etc. As an 
example, Figure 1 shows the reference OA defined by the OACE.  

 
Figure 1. The OACE’s Open Architecture Computing Environment  

(extracted from NSWCDD, 2004, August 23a) 
 

The OACE also defines guidance and strategies for fault tolerance, scalability, 
portability, real-time performance, system composition, system test & certification, and 
selection of standards (e.g., POSIX, CORBA, etc.). The OACE will allow the Navy to 
introduce and change out commercial technology to maximize affordability and performance 
goals.  

FORCEnet is the operational construct and architectural framework for Naval 
Warfare in the Information Age to integrate warriors, sensors, networks, command and 
control, systems, platforms, and weapons into a networked, distributed combat force, 
scalable across the spectrum of conflict from seabed to space and sea to land (FORCEnet, 
2007a). FORCEnet is, thus, the future implementation of the Network Centric Warfare in the 
Navy, and is the Navy's primary effort to integrate multiple architecture and standards 
efforts. Research efforts demonstrated that across the Navy Enterprise, FORCEnet viability, 
affordability and sustenance necessitates an architecture that is in full compliance with OA 
technology, systems and standards. The development and embedding of OA within 
FORCEnet will enable a superior, adaptive, “plug and fight” capability for the modern 
warfighter of today and tomorrow. Figure 2 presents the system interface view of 
FORCEnet.  
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Figure 2. FORCEnet’s System Interface Description  

(extracted from FORCEnet, 2007b) 
 

The Naval Open Architecture Enterprise Team (OAET) is currently spearheading an 
OA/FORCEnet Risk Reduction Experimentation effort to minimize the risk of delivering 
interoperable products (Shannon, 2006). This effort is in its early stages and has recently 
completed its first cycle. An example of a project enabling the integration of OA into 
FORCEnet is the “Open Architecture as an Enabler for FORCEnet” project (Deering et al., 
2006, September). It concentrates on implementing network-centric military operations with 
specific threat-engagement scenarios (i.e., sensed threats to available weapons). These 
concepts are applied to the FORCEnet OA Domain Model using legacy and future 
warfare/Navy systems based on OA concepts. An analysis exposed potential functional 
boundary limitations in the current OA Domain model, and a revised model has been 
proposed.  

The Modular Open Systems Approach (MOSA) (Open Systems Joint Task Force, 
2007) is both a business and technical strategy for developing new systems or modernizing 
existing ones (see Figure 3).  
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Figure 3. MOSA’s Fundamental Building Blocks  

(extracted from Flowers & Azani, 2004) 
 

As a business strategy, the MOSA enables program teams to build, upgrade and 
support systems more quickly and affordably. This can be achieved through the use of 
commercial products from multiple sources and by leveraging the commercial-sector 
investment in new technology and products. The technical portion of the MOSA addresses a 
system design that is modular, has well-defined interfaces, is designed for change and, to 
the extent possible, makes use of commonly used industry standards for key interfaces. This 
system design is best accomplished using collaborative engineering based on sound 
systems engineering processes. Adherence to MOSA allows for developing DoD systems 
that account for the growing asymmetrical threats, unprecedented rate of technological 
change, and requirements for joint warfighting capabilities. The Navy’s OA is closely related 
to MOSA. OA is a more specific extension of generalized MOSA principles. Naval OA 
applies to computer-intensive National Security Systems as defined in the Clinger Cohen 
Act, while MOSA has broader applicability, e.g., including mechanical systems.  

The successful implementation of OA principles in the Navy may bring multiple 
benefits from both business and technical viewpoints to the Navy and other DoN/DoD 
organizations. Business benefits include: (i) enterprise-wide plans based on a cost/capability 
analysis of programs that address capability, affordability, and stabilization, (ii) flexible 
acquisition strategies and contracts that enable the Navy to reuse software, easily upgrade 
systems, and share data throughout the enterprise, (iii) streamlined investments in similar 
capabilities, (iv) increased competition to foster innovation and leverage technology 
upgrades, and (v) established enterprise processes and governance to foster integration. 
On the other hand, an efficient implementation of OA principles yields many technical 
benefits, including: (i) layered and modular open architectures that address portability, 
maintainability, interoperability, upgradeability and long-term supportability, (ii) modular, 
open designs consisting of components that are self-contained elements with well-defined 
interfaces, (iii) maximum use of commercial standards and commodity “commercial off-the-
shelf” (COTS) products, and (iv) systems that continuously conform with Information 
Assurance (IA) requirements and monitor technology developments for IA improvements.  
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Figure 4 below presents a synthesis of OA benefits.  

 
Figure 4. Open Architecture Benefits 

(extracted from DAU, 2007C) 
The Navy still needs to complete carrying out the necessary business and technical 

changes to achieve the stated OA goals. Well-known technical changes include the need for 
continuing the transition to COTS-based computing plants in modular architectures, the 
development of an OA Enterprise component library capability to facilitate market research 
and reuse of components, the alignment of standards among the domains and the 
alignment of standards to the DoD Information Technology Standards Registry (DISR). This 
paper identifies additional technical changes related to test and evaluation.  

Difficulties in Testing Systems with Open Architectures 

The Navy has emphasized improving its business and organizational processes, 
structure and expertise over technical matters. The Navy is currently able to deliver open 
architecture-based systems. However, known methods for achieving dependability with OA 
are expensive and not clearly understood. The Navy’s current approach to system testing is 
not well matched to the needs of open environments. It is too expensive; it takes too long, 
and it lacks agility to react to changes during and after acquisition.  

Traditional testing techniques, such as scenario-based testing, are commonly used 
for assessing dependability of Navy systems. These techniques are strongly dependent on a 
particular system configuration and environment. The environment is usually modeled using 
flat, uniform distributions of software inputs and a limited number of profiles. Accordingly, the 
environment’s profile and the most relevant estimates of the application inputs are 
considered. For example, in Navy’s control systems, input parameters such as the number 
of weapons or the number of strike elements are included within the testing profiles.  

The drawback of these techniques is that when the system configuration or 
environment changes, the designed test cases also need to be changed. Plugging in a new 
component will lead to a completely different system and will likely invalidate the test 
scenarios and profiles previously used. A similar problem also occurs when the application 
has to be used in an operational environment other than the one for which it was originally 
designed, which is expected to be common for reusable components. This raises an 
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important concern since Navy systems are submitted to frequent changes. Better ways of 
doing testing and evaluation are, thus, highly desirable.  

Acquisition of new system modules and components is also an important concern. 
While an architectural or modular approach should allow for a certain degree of 
predictability, current Navy testing processes do not deal with modularity. As a result, time-
consuming and expensive test procedures are needed each time a new system release 
comes up because available testing methods cannot support the high frequency of releases. 
Methods that limit the number of configurations of an architecture might be required, at least 
in the near term. Such limitations may be able to be relaxed as technologies for testing 
families of systems improve.  

In flexible, open systems, components need to be assembled in a large number of 
configurations; and because the system is open, new components can be added that did not 
even exist at the time the system was originally designed.  

In practice, the number of possible configurations for an open system is very large, 
because each of many slots in an open architecture can be independently filled by several 
different specific subsystems. Because the number of choices for each slot must be 
multiplied together to produce the total number of possible configurations, the number of 
possibilities is astronomical for the kinds of systems designed by the Navy. For example, it 
has been estimated that avionics software systems have thousands of components and tens 
of thousands of connections. In principle, the number of configurations is unbounded 
because an unknown and unlimited number of new subsystems can be created in the future. 
One consequence of this is that it will be impossible to test all configurations, and that a 
majority of the possible configurations will not be tested at all. These ideas are graphically 
summarized in Figure 5.  

 

Dependable
configurations

Tested
configurations

Known
configurations

Non-dependable & 
unknown

Non-dependable & 
untested

 

Figure 5. Example of Various Sets of Configuration Types: Dependable vs. Non-
dependable, Known vs. Unknown, Tested vs. Untested 

Each node in the figure represents a possible configuration of an open architecture. 
The connections between the nodes represent transitions between possible configurations, 
such as those resulting from the replacement of a subsystem with another plug-compatible 
subsystem that fits in the same slot of the open architecture. The figure is valid at many 
different scales; a module can be as small as a single data item, software procedure, or 
integrated circuit chip, and can include subsystems as large as entire ships. Figure 5 also 
highlights two important concerns (indicated by the interrogation point): the non-dependable 
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configurations that are unknown and the non-dependable configurations that (although 
known) have not been tested. Indeed, the number of configurations in practice is too large to 
be able to either know or test all of them. We seek alternative methods to palliate these 
issues.  

These considerations indicate that quality assurance methods that depend on 
checking the individual possible behaviors of the entire system do not have any hope of 
being effective for the test and evaluation of flexible open architectures, and that 
conceptually new and different methods will have to be employed to achieve dependability 
for such systems in the presence of reuse and reconfiguration. 

Testing of reusable subsystems is also subject to the above considerations and, 
similarly, requires new methods for effectively achieving dependability. This conclusion is 
consistent with past experience with system failures in military, scientific and commercial 
applications. The majority of observed failures are due to requirements and specifications 
errors, many of which manifest after a subsystem has been moved to a different 
environment than the one for which it was originally designed and tested. This is an 
indication that in current practice, the effectiveness of testing is very sensitive to the 
expected operating environment, which is unknown for reusable subsystems. Indeed, 
software reuse may invalidate the operational profiles and test cases and scenarios 
originally developed. The new operational profiles, test cases and scenarios are unknown, 
and no efficient method exists to calculate the required “delta” describing the necessary 
changes from previously used profiles (or test cases or scenarios) so that they can be 
applied to the newly reconfigured system. Open Architecture facilitates software reuse, 
which adds weight to this issue. 

Test cases correspond to the traditional artifact used in testing, which are based on a 
model of the system environment. In stovepipe systems, requirements analysis and testing 
is greatly simplified compared to open systems. Also, there exist numerous methods and 
techniques that allow for linking the testing results to dependability parameters, so as to 
obtain a quantitative measure of the overall dependability of the system (e.g., notion of 
“dependability benchmarking”).  

The traditional concept of system design is not focused on architectural “bits.” An 
architecture is related to a family of systems, while a design is traditionally associated with a 
single instance of a system. Also, an architecture involves more complexity than the 
traditional notion of system “configuration.” This is due to the fact that the “context” is 
included in the architecture, which is usually unknown, not well understood or difficult to 
accurately take into account.  

The type of dependability properties to be tested is also an important concern. 
Making Navy systems dependable will require considering a certain level of system 
performance and availability as part of the dependability concern. Indeed, architectural 
changes can considerably impact Key Performance Parameters (KPP), availability and other 
system requirements. Other concerns relate to how testing can be applied to Navy systems 
that are based on migrating services (e.g., reconfiguration of service-based architectures) 
and how system developers and testers can be involved in the acquisition process. At the 
moment, it is not possible to accurately know how much it may cost to move towards an 
open architecture paradigm. 
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Proposed Approach 

In the short term, the problems outlined in the previous section are being addressed 
by attempting to predict future needs and by limiting the allowed configurations accordingly. 
This has the advantage of minimizing impact on current development processes and 
organizations, and the disadvantages that cost of testing is sill large and proportional to the 
number of reconfigurations, and that in cases in which predictions of future needs turn out to 
be incorrect, reconfigurations will need time for lengthy retesting, or new configurations will 
have to be fielded without assurance of dependability. However, in the Navy’s Open 
Architecture vision, the “plug and fight” process is supposed to be inexpensive and agile.  

The main objective of the OA approach is to get away from monolithic designs and 
architectures, and gain the ability to replace bits of systems. The goal is to facilitate 
DoD/Navy systems acquisition. This requires a shift from scenario-based testing to 
architecture-based testing. The constraints expressing the most important dependability 
properties should be part of the architecture. The architecture should, thus, include not only 
components and connections but also constraints. Note that there are different types of 
constraints—encompassing requirements, capabilities and standards (capabilities are 
similar to requirements). A dependable architecture should have requirements associated 
with it, which means that certain dependability guarantees should be already reflected in the 
architecture itself. Then, testing is not only to be applied to the system implementation, but 
also to the architectural model.  

Thus, fully realizing the open architecture vision requires a new paradigm for test and 
evaluation. We propose such a paradigm here, based on the concepts of dependability 
contracts, interchangeable software parts, and computer-aided enforcement of dependability 
contracts.  

Current approaches to system development and testing are more analogous to 
individual craftsmanship than they are to modern concepts of mass production and 
interchangeable parts. Craftsmen used to build things by individually tuning mating parts 
until they properly fit together. In such a context, designs could be relatively informal and 
relatively rough. In a mass production environment, parts are built to standards with 
precisely specified tolerances, and it is up to the designer to determine and verify the 
tolerances necessary to make the design work for any combination of parts that meet the 
specified tolerances. An example that illustrates this problem is the manufacturing of a rifle 
using a set of interchangeable parts. This is different from having parts that need to be 
crafted individually. It is necessary to evaluate how much variation is allowed to make 
different components and parts fit into the rifle. To do this, it is necessary to measure 
absolute sizes and construct the various parts of the rifle with certain tolerances. These 
modular approaches have been used in manufacturing for many years, but have never been 
successfully integrated into software engineering approaches. Another example consists of 
modern audio systems. There exist specific standards for audio systems specifying how 
things need to fit together in order for components from different vendors to work together 
effectively. Standards for audio system components can be relatively simple and generic 
only because the requirements for stereo systems are very simple. An audio system is not 
concerned about whether it is playing a song or the news. For systems whose behavior is 
sensitive to the meaning of the data, new types of standards will be needed to accomplish a 
similar function. These examples raise questions related to the kinds of standards that need 
be considered to make system components interchangeable and how such changes may 
influence testing. The answers to these questions should take into account the fact that we 
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aim at testing pieces of the architecture versus standards, not versus (other pieces of) the 
system.  

We are seeking analogous quality-assurance techniques for systems involving 
software. The fundamental operation of such an approach can be outlined as follows: 

1. System-wide capabilities are characterized by a set of dependability properties that 
must hold in all acceptable system configurations. These properties comprise the 
dependability contract for the system as a whole. They become part of a dependable 
open architecture for the system and serve as the basis for system quality 
assurance. Dependability contracts are primarily technical rather than legal 
documents, and they are intended to be checkable via software.  

2. The designers of the open architecture determine the common structure of the 
system and develop the component-level dependability contracts for the subsystems 
and connectors. The common structure consists of connection patterns and 
subsystem slots to which all configurations must conform.  

3. The quality-assurance team checks the structure of the architecture and the 
dependability contracts for subsystems and connectors to make sure they are strong 
enough to guarantee the system-wide dependability properties in all possible 
configurations. This is a one-time process that uses symbolic analysis techniques. 
Assuring the feasibility of this step is one of the objectives of ongoing research by the 
authors. 

4. The quality assurance team tests each component (subsystem and connector) 
against its dependability contract. This is envisioned to be an automated process to 
enable sufficient large sets of test cases for statistically significant conclusions about 
desirable dependability levels. The cost for this step is proportional to the number of 
components, and the process must be completed once for each version of each 
atomic component. Technologies for doing this are well known, and many of them 
are used in common practice.  

5. The quality-assurance team checks components for non-interference. This process 
is computer-aided. Many of the technologies for this are well known, and some of 
them are commonly used. Some development may be needed to get a complete set. 
This part of the process ensures that components that work correctly in isolation will 
continue to do so when they are connected.  

6. The assumptions about the operating environment on which the architecture 
depends are checked by runtime monitoring. This can be done using BIT (Built-In-
Test) technology that is currently in use in some DoD systems. This is recommended 
for all reusable components.  

Figure 6 provides an overview of the global approach. The architectural and testing 
visions of the proposed approach are described below:  

 Architectural vision 

♦ Consider an architecture as a support system not only for development but also 
for testing—including interchangeable software parts. 
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♦ Look at an architecture as consisting not only of components, connections and 
constraints, but also of standards, requirements/capabilities and environmental 
assumptions. 

 Testing vision 

♦ Relate testing to standards and constraints as a means to ensure architecture 
meets requirements and provides the needed capabilities. 

♦ Relate standards to architectural structures and associated dependability 
requirements. 

♦ Certify absence of interference between components and the dependability 
properties of interest.  

♦ Check constraints on environment at reconfiguration time. 

♦ The purpose is to prevent problems (such as integration problems). When 
feasible, this is better than detecting those problems. The approach should allow 
for making responsibilities more visible. 
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Testing Components vs. Standards  
(step 4)
Verify Architecture vs. 
Requirements & Standards (step 3) 

Ensure non-interference among 
components (step 5)

 

Figure 6. Overview of the Global Approach 
The above process is a long-term goal whose realization depends on refinement and 

integration of new technologies and processes—especially those supporting steps 3 and 5.  

Full success of the approach will eliminate the need for integration testing after each 
reconfiguration. This is the meaning of interchangeable software components. We do not 
propose to eliminate integration testing entirely, even in the long term. The reason is that all 
analysis is relative to a model. While the models we use are good, it is always possible that 
the existing implementation does not realize the intended model completely precisely. For 
example, it is possible that the compiler used does not implement its programming language 
correctly in some rare cases, or that the hardware does not perform its functions as 
specified under some rare conditions. For these reasons, we recommend integration testing 
for at least one system configuration, e.g., the initial configuration to be fielded. Shorter-term 
reductions in the amount of testing needed after a reconfiguration are expected when 
effective non-interference checks eliminate specific kinds of failures due to integration 
issues.  
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Some examples include interference due to data or control interactions that are not 
allowed by the architecture, or due to resource constraints such as limits on memory, 
network bandwidth, or computation time. An example of existing technology that can 
eliminate a specific type of interference is architecture-based schedulability analysis, which 
can guarantee absence of failures due to real-time constraints and computing resource 
limits.  

Another related issue is how to certify a standard. The certification method should be 
able to satisfy the critical requirements of all architectural configurations. Quality assurance 
and analysis techniques (such as model checking or theorem proving) could be used for 
such purposes. These techniques are well-known, well-established and have been used for 
many years. However, these techniques do not scale-up well. The reason is that they have 
traditionally been applied to program code, which is a very large artifact. We believe this 
technology can be applied to the architecture of a system because the architecture is much 
smaller than the code. This is especially the case if each level of the architectural hierarchy 
can be checked separately. To make this possible, the traditional concept of architecture 
should be enhanced, e.g., constraints and standards should also be included.  

Another issue is that to check the absence of interference between components, 
static-analysis techniques (e.g., type checking, static checking, code analysis) will be 
needed, since testing is not enough for this purpose. This means that reachability analysis 
techniques will necessarily be different. The underlying approach might be “large scale.” but 
it does not mean it needs to be sophisticated (just feasible). Moreover, if testing is 
conducted against a standard, it is possible to have an automated testing oracle. In classical 
reliability techniques, it is possible to calculate the number of test cases needed to assure 
(with a certain confidence level) that the system will not experience more than a given 
number of failures during a determined period of time. For example, if the system should not 
fail more than once in N executions, the number of test cases needed for a confidence level 
of 1-1/N is given by Nlog2 N. (e.g., about 20 million test cases are needed to reach 10EXP-6 
assurance).  

Testing with respect to standards can drastically reduce the number of test cases 
needed because each component can be tested separately, and all possible combinations 
do not need to be checked. However, this source of potential savings depends on effective 
methods for carrying out steps 3 and 5 above.  

Some shorter-term savings can be achieved by using testing approaches that obtain 
information about many different configurations based on a single test case run on a single 
configuration. An example is an approach that tests every pair of components that are 
connected in the architecture in at least one system configuration, but not in all possible 
contexts.  

The major contributions and advantages of the proposed approach are: 

 Ability to reduce the testing effort. The approach will enable reducing unnecessary 
testing on every system change and enable identifying what kinds of testing and 
checking do need to be repeated when something changes.  

 Ability to limit the retesting scope. The approach will limit the scope of retesting when 
possible. This will involve a combination of testing with other kind of quality-
assurance techniques. 
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 Ability to assure dependability. The approach will include methods for assuring, with 
a single analysis, that all possible configurations that can be generated in a model-
driven architecture will satisfy given dependability requirements. Prior successful 
experience with developing methods of this kind has been demonstrated by the first 
author of this paper (Berzins, 2000). These results will be extended and applied to fit 
the requirements of the Navy open-architecture initiative.  

Example 
A simple example of part of a dependable architecture is shown in Figure 7. There 

are two component slots, one representing the software driver for a position sensor, and the 
other a control software module for an autopilot. There is one connector that carries 
information about the current position of the host platform. The example shows just a 
fragment of a realistic architecture as indicated by the ellipsis on the connections. In a 
complete architecture, the position information will also feed into other systems, such as 
tactical displays and weapons control systems.  

Subsystem dependability contract
position.error ≤ max.error,
position.delay ≤ max.delay,
…

own craft
position autopilot

Overall dependability contract

| actual.position – planned.position | 
≤ navigation.tolerance

position

 

Figure 7. Example of a Dependable Architecture Fragment 
The figure shows a simplified1 partial description of the dependability contracts. The 

overall purpose of the interconnection is to keep the platform on course. This informal intent 
is expressed as a measurable dependability property that becomes the basis for the quality 
assurance of this architectural fragment. The navigation tolerance is a parameter of the 
overall system requirements as well as of the architecture. It provides a partial 
characterization of mission needs and a family of system configurations that meet that need. 
For example, different types of platforms may have different navigation tolerances. Note that 
this same architecture fragment is relevant to surface, subsurface and air platforms. The 
own-craft-position subsystem slot can be filled by a variety of sensors, such as GPS, inertial, 
VOR/DME, etc., and the autopilot subsystem slot can likewise be filled with components that 
realize different control algorithms. The subsystem dependability contract expresses part of 
the standards that any acceptable realization of the subsystem must meet—by expressing 
tolerances—for the accuracy of the sensor and the allowable time delay between the time 
the platform’s position is measured and the time the position is delivered to the connector. It 
is the responsibility of the designers of the architecture to determine how the values of these 

                                                 

1 For example, for air platforms, the vertical navigation tolerance can be different than the horizontal 
tolerance.  



 

subsystem dependability parameters are derived from the overall dependability parameter. 
The purpose of Step 3 in the proposed quality assurance process is to check that this 
derivation is valid in the sense that the system will meet its requirements for any choice of 
sensors that meets its dependability contract, as well as for any choice of control algorithm 
that meets its dependability contract (not shown). This process depends on mathematical 
modeling, analysis and proof techniques, some existing and some to be developed.  

The process of reconfiguring the system fragment in the example would amount to 
replacing the sensor and its software driver with another one. The quality-assurance 
activities associated with this would be certifying that the new component meets the 
dependability properties in the own-craft-position dependability contract (Step 4) and non-
interference checks between the new component and the other components in the new 
configuration (Step 5).  

Our objective is to provide static analysis methods to accomplish Step 5. If a 
complete set of such methods can be provided, then integration testing will not be needed 
after such a component replacement. If some but not all of the potential interference modes 
can be ruled out by static checking, then some integration testing will still have to be 
performed as part of Step 5, but the scope of that testing can be focused on the failure 
modes that are not yet covered by static checks. We note that although we have been 
mostly focused on replacement of software components, sometimes, as in this example, a 
meaningful reconfiguration may involve replacement of some hardware as well. In our 
example, some kinds of improvements may be possible by replacing just the driver software 
for a given sensor, but the largest gains may come from combining a new and more 
accurate type of position sensor with the new software driver needed to make the new 
sensor fit the existing subsystem slot in the architecture. The goal is not to change the 
architecture when the system is reconfigured. In such cases, the non-interference tests may 
include electrical, thermal and mechanical considerations in addition to software 
consideration.  

Our recommendation is to identify potential sources of interference in detail, and to 
develop specific quality-assurance techniques for assuring absence of each type. These can 
involve a combination of static analysis checks, such as: data-type consistency, lack of 
unspecified data flow, lack of unspecified control flow, conformance to power and heat load 
limits, etc., with conventional testing processes. We also note that in some specific contexts, 
specialized efficient testing procedures are possible, for example, where dominance 
relations exist. For instance, in continuous domains it is common that a single worst-case 
test case can expose all the faults that any other test case could detect.  

The dependability contracts in the example also have a dominance property: if a 
component has been certified with respect to a component with a larger error tolerance, it 
will also work for one with a smaller error tolerance, because every possible behavior of the 
more accurate component is also a possible behavior of the original, less accurate 
component. In the example, a sensor with a given max.error and max.delay can be replaced 
with any other sensor that has a smaller max.error and smaller max.delay provided that the 
new sensor also passes all non-interference checks.  

We note that a kit of available components can be pre-certified with respect to Steps 
4 and 5. This would enable agile dependable reconfiguration, and perhaps even a capability 
for on-the-fly “plug and fight.” The cost to do Step 4 is proportional to the number of 
components, and can economically be completed in advance. The cost to do Step 5 
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depends on whether generic non-interference methods can be developed for all needed 
failure modes. In the best case, it is proportional to the number of components and could be 
done in advance. If all-pairs analysis is necessary, cost would be quadratic in the number of 
components—making pre-checking expensive but still perhaps feasible in advance if the 
number of components in the reconfigurable part is not too big. In the worst case, where 
multiple interactions may be significant, some non-interference checking may still be 
required after reconfiguration, when the actual set of components in the new configuration is 
known.  

Comparison with Related Work 

The purpose of this section is to provide a comprehensive survey on existing 
approaches for improving Quality Assurance properties of open and flexible architecture-
based systems. It is also an objective to review existing works on how testing is performed 
in a fluid environment with agile reconfiguration.  

Comparison with Navy’s Approaches 

The Naval OA program interacts with the OACE, FORCEnet and MOSA initiatives in 
different ways. As described above, OACE is based on a set of standards for the computing 
environment of surface ship-centric systems specifications; MOSA is an acquisition and 
design approach, while FORCEnet is a unifying concept for multiple architectures and 
standards efforts in the Navy. The recommended testing practices are described by these 
standards in general terms and are mostly founded on scenario-based techniques. For 
example, OACE recommends functional and performance testing against specified system 
requirements, organized according to test cases and scenarios. It defines the concept of 
“virtual homogeneity” to facilitate testing by identifying groups of sub-systems performing 
similarly. The concepts of “tree of subsystems” and “aggregations of components” are also 
introduced. Each aggregation exists only in a manageable number of configurations. A test 
case can be applied to many configurations when there is no (considerable) interaction 
between choices of configurations. Schedulability analysis is recommended for ensuring that 
any configuration that the resource manager creates is schedulable. These are existing 
attempts to reduce cost of testing by limiting flexibility of systems and to increase confidence 
that a test case provides useful information about more than one configuration by limiting 
possible sources of interference between components.  

Our methodology aims at defining a broader testing approach covering both 
functional and non-functional properties of Open Architecture-based systems, with emphasis 
on ensuring dependability for all possible system configurations. Instead of seeking for 
subsystems performing similarly (concept of “virtual homogeneity”), our approach will use 
architectural artifacts and standards which already define the basis for all the different 
groups of subsystems that can be developed in practice. In our context, “performing 
similarly” means “meeting the dependability contract associated with a subsystem slot in the 
open architecture.” Since our approach will work at the architectural level, and the 
architecture represents a family of systems and subsystems, the concepts of “tree of 
subsystems” and “aggregation of components” will be also covered. The non-interaction 
between choices of configurations is already covered by the concept of non-interference 
defined in our approach. Schedulability analysis is also part of the non-interference notion, 
since it will allow for predicting resource conflicts between tasks and processes.  
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Comparison with Component-based Testing  

Component-based testing can be readily employed for Step 4 of our methodology to 
further test a candidate software component against the specific domain and architectural 
standards of the target system in which it is to be plugged-in and integrated.  

Traditionally, component-based testing is performed by the component’s developer 
itself (e.g., through unit testing). It is aimed at establishing the proper functioning of the 
component and at detecting possible failures early, i.e., ensuring the quality of the 
component before it is released. The tests established by the developer can rely not only on 
a complete documentation and knowledge of the component, but also on the availability of 
the source code, and, thus, in general pursue some kind of coverage testing. Therefore, 
when applied by the component’s developer, this testing approach cannot address the 
verification of the component’s behavior with respect to the specifications of the host 
system(s) in which the component will be later assembled (i.e., integration and system 
testing). Note, however, that component-based testing techniques are also used by system 
testers and integrators.  

Voas (1998, June; 2000, August) proposed a certification strategy for off-the-shelf 
components relying on black-box testing, system-level fault injection and defense protection 
through wrapping. Black-box testing is a well-known testing technique used whenever the 
source code of a component is not available, only its interface specifications. System fault 
injection and defense wrapping are system-level approaches for integration testing and fault 
containment that might not be needed in our approach if the non-interference property is 
fully satisfied.  

Other approaches aim at making component’s data available (e.g., internal 
behavioral and structural data, development data, etc.) so that the data can assist the 
testing process. The work in Orso, Harrold and Rosenblum (2001) defines an approach in 
which metadata of a component (describing both static and dynamic aspects) are available 
throughout the entire component’s lifecycle. The feasibility of the approach is demonstrated 
in the context of component-based testing, consisting of the generation of self-checking 
code and program slicing. The work in Whaley, Martin and Lam (2002) automatically 
extracts a finite-state machine model from the interface of a software component, which can 
be delivered along with the component itself for testing purposes. Off-the-shelf (OTS) 
components are usually acquired as black-box code without access to data that might be 
necessary for testing. Salles, Rodriguez, Fabre and Arlat (1999) developed a framework for 
integration testing of OTS real-time operating systems (RTOS). Information needed for 
testing is obtained through reflective techniques implemented in an additional software 
module added to the OTS component. A fault-injection methodology is used to verify that 
the behavior of the integrated OTS component does not impact the dependability of the 
system.  

Bertolino and Polini (2003) recognized the importance of testing a software 
component in its deployment environment (i.e., the target system). They developed a 
framework that supports functional testing of a software component with respect to 
customer’s specification—which also provides a simple way to enclose the developer’s test 
suites which can be re-executed by the customer. The customer is thus provided with both a 
technique to specify a deployment test suite early and an environment for running and 
reusing the specified tests on any component implementation. There is a complete 
decoupling between the tests’ specification and component implementation. The approach 
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requires the customer to have a complete specification of the component to be incorporated 
into a system.  

In the formal verification domain, there has been a long history of research on 
verification of systems with modular structure. A key idea (Lamport, 1983; Kupferman & 
Vardi, 1997; Henzinger, Qadeer & Rajamani, 1998) in modular verification is the assume-
guarantee paradigm: a module should guarantee to have the desired behavior once the 
environment with which the module is interacting has the assumed behavior. There have 
been a variety of implementations for this idea (see, e.g., Grumberg & Long, 1994; Alur et 
al., 1998; Pasareanu, Dwyer & Huth, 1999; Dingel, 2003; Chaki, Clarke, Groce, Jha & Veith, 
2003; Xie & Browne, 2003). The key issue with the assume-guarantee style reasoning is 
how to obtain assumptions about the environment. Giannakopoulou et al. (Giannakopoulou, 
Pasareanu & Barringer, 2002; Giannakopoulou, Pasareanu & Cobleigh, 2004) introduced a 
novel approach to generate assumptions that characterize exactly the environment in which 
a component satisfies its property. Their idea is based on a purely formal verification 
technique (model-checking). Fisler et al. (Fisler & Krishnamurthi, 2001; Li, Krishnamurthi & 
Fisler, 2002) introduced a similar idea of deducing a model-checking condition for extension 
features from the base feature for model-checking, feature-oriented software designs. This 
approach is not applicable to component-based systems where unspecified components 
exist. This work differs from related work like Xie and Dang (2004), in which an automata-
theoretic approach is used to solve a similar LTL model-checking problem. 

In the past decade, there has also been significant research on combining model-
checking and testing techniques for system verification, which can be grouped into a 
broader class of techniques called specification-based testing. Many of the studies utilize 
model-checkers’ ability of generating counter-examples from a system’s specification to 
produce test cases against an implementation (Callahan, Schneider & Easterbrook, 1996; 
Holzmann, 1997, May; Engels, Feijs & Mauw, 1997; Gargantini & Heitmeyer, 1999; 
Ammann, Black, & Majurski, 1998; Black, Okun, & Yesha, 2000). Peled et. al. (Peled, Vardi 
& Yannakakis 1999: Groce, Peled & Yannakakis, 2002; Peled, 2003) studied the issue of 
checking a black-box against a temporal property (called black-box checking). The research 
focuses on how to efficiently establish abstract models for black-box testing and on how to 
define properties (e.g., LTL formula) about the black-box components. 

Comparison with Runtime Software Reconfiguration  

For an important class of safety- and mission-critical software systems, such as air 
traffic control, telephone switching, and high-availability public information systems, shutting 
down and restarting the system for upgrades incurs unacceptable delays, increased cost, 
and risk. Support for runtime modification is a key aspect of these systems. In our 
methodology, a reconfigured set of components can be seen as a particular configuration of 
a system architecture. Since our approach aims at guaranteeing dependability properties for 
the family of systems and configurations represented by the architecture, the proposed 
testing approach should be able to provide assurance in presence of runtime reconfiguration 
for at least a certain number of properties (e.g., non-interference).  

There are a wide variety of techniques for supporting runtime software change. 
Some of the most popular techniques are based on Dynamic Software Architectures 
(Oreizy, 2007). Several research projects have addressed these issues, such as Self-
Adaptive, Healing Architectures (ArchShell, 2007), or Dynamic Wright (Allen, Douence & 
Garlan, 1998, April).  Gupta, Jalote and Barua (1996, February) describe an approach to 
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modeling changes at the statement and procedure levels for a simple imperative 
programming language. Many dynamic programming languages, such as Lisp, Smalltalk, 
and Haskel (Peterson, Hudak & Ling, 1997, July) have supported runtime software change 
for decades. Dynamic linking mechanisms and libraries have been available in operating 
systems such as UNIX, Microsoft Windows, and the Apple Macintosh for some time. New 
approaches to dynamic linking (Franz, 1997, March) hope to significantly reduce the runtime 
performance overhead associated with using such mechanisms. Dynamic Object 
Technology, such as CORBA (Object Management Group, 1996, July) and COM 
(Brockschmidt, 1994) support the runtime locations, loading, and binding of software objects 
or components.  

Service-oriented architectures (SOAs) typically have a dynamic nature, given by the 
runtime detection of components through registry services and subsequent dynamic binding. 
The work in Baresi, Heckel, Thone, and Varro (2006) defines a refinement relation from a 
generic style of component-based systems to the SOA style based on the use of graph 
transformation systems as models of architectural styles at different levels of platform 
abstraction (which represent reconfiguration and communication scenarios as graph 
transformation sequences). Besides the many proposals for Architecture Description 
Languages (ADLs), like Rapide (Luckham et al., 1995; Oreizy, 1996, August; Oreizy, 
Medvidovic & Taylor, 1998, April), Wright (Allen, 1997; Allen, Douence & Garlan, 1997, 
September; Allen, Douence & Garlan, 1998, April; Allen, Douence & Garlan, 1998), Darwin 
(Magee, Dulay, Eisenbach & Kramer, 1995; Kramer & Magee, 1998) or C2 (Medvidovic, 
1996, October; Oreizy, Medvidovic & Taylor, 1998, April), we must mention those 
approaches that exploit graph transformation (Hirsh, 2003; Hirsh & Montanari, 2001, August; 
Metayer, 1996, October; Taentzer, Goedicke & Meyer, 2000; Wermelinger & Fiadeiro, 2002; 
Baresi, Heckel, Thone, & Varro, 2003; Gonczy, 2006) to reason about the consistency of 
reconfiguration operations and interaction of components with respect to structural 
constraints. Le Metayer (1996, October) describes architectures by graphs and the valid 
graphs of an architectural style by a graph grammar. Reconfiguration is described by 
conditional graph-rewriting rules. He uses static-type checking to prove that the rewriting 
rules are consistent with the respective style. The graphs represent computational entities 
but not connectors, specifications, or other resources. Wermelinger and Fiadeiro (2002) 
provide an algebraic framework based on Category theory in which architectures are 
represented as graphs of CommUnity programs and superpositions. Dynamic 
reconfigurations are specified by graph transformation rules over architecture instances. 
Both styles and rules are used for modeling domain-specific restrictions rather than the 
underlying platform. Consequently, they do not deal with refinement relationships between 
different levels of platform abstraction. Hirsch (2003) uses hypergraphs to represent 
architectures and hyperedge replacement grammars to define the valid architectures of an 
architectural style. Furthermore, he uses graph transformation rules to specify runtime 
interactions among components, reconfigurations, and mobility. In the CHAM approach 
(Inverardi & Wolf, 1995, April), architectural reconfiguration is studied in terms of molecules 
and reactions, and the proposals that represent architectural styles by means of graph 
grammars (Hirsh & Montanari, 2001, August; Metayer, 1996, October; Taentzer, Goedicke & 
Meyer, 2000; Wermelinger & Fiadeiro, 2000, March) and reason on changes and evolution 
with respect to structural constraints. Some of these approaches use a graph grammar to 
specify the class of admissible configurations of the style. Graph transformation rules model 
only dynamic aspects like evolution and reconfiguration. The advantage is that a declarative 
specification is more abstract and easier to understand, even if constructive/operational 
ones are better for analysis and tools. The use of graph-transformation techniques to 
capture dynamic semantics of models has also been inspired by work proposed by Engels, 
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Hausmann, Heckel and St. Sauer (2000) under the name of dynamic meta-modeling. That 
approach extends metamodels—re-defining the abstract syntax of a modeling language like 
UML by using graph-transformation rules that allow for describing changes to object graphs 
and represent the states of a model.  

Grammar-oriented Programming (GOP) and Grammar-oriented Object Design 
(GOOD) (GOOD, 2002) are based on designing and creating a domain-specific 
programming language (DSL) for a specific business domain. GOOD can be used to drive 
the execution of the application, or it can be used to embed the declarative processing logic 
of a context-aware component (CAC) or context-aware service (CAS) (Arsanjani, Curbera, & 
Mukhi, 2004). GOOD is a method for creating and maintaining dynamically reconfigurable 
software architectures driven by business-process architectures. The business compiler was 
used to capture business processes within real-time workshops for various lines of business 
and create an executable simulation of the processes used. Instead of using one DSL for 
the entire programming activity, GOOD suggests the combination of defining domain-
specific behavioral semantics in conjunction with the use of more traditional, general 
purpose programming languages.  

The use of model-checking techniques for verifying software architectures has been 
thoroughly studied. For example, vUML (Lilius & Paltor, 1999, October), veriUML (Compton, 
Gurevich, Huggins & Shen, 2000), JACK (Gnesi, Latella & Massink, 1999), and HUGO 
(Schafer, Knapp & Merz, 2001) support the validation of distributed systems (where each 
statechart describes a component), but do not support complex communication paradigms. 
These works study static systems whose topology cannot vary at runtime. Similarly, Garlan 
Khersonsky and Kim (2003, May) and the researchers involved in the Cadena project 
(Hatcliff, Deng, Dwyer, Jung & Ranganath, 2003, May) applied model-checking techniques 
to analyze specific architectures with a fixed topology based on the publish/subscribe 
paradigm. A formal approach that considers refinement of dynamic reconfiguration can be 
found in Bolusset and Oquendo (2002). The approach is targeted on the translation from 
one ADL to another rather than on the refinement between architectural styles. Cherchago 
and Heckel (2004) describe the application of graph transformations in the runtime matching 
of behavioral Web service specifications. In Heckel and Mariani (2005), the conformance 
testing of Web services is based on graph transformations, focusing on the automated test-
case generation. The work of Bertolino and Polini (2006) utilizes the benefits of these 
approaches and defines fault-tolerant algorithms incorporated into appropriate 
reconfiguration mechanisms for modeling reliable message delivery by graph-transformation 
rules in SOA. Graph transformation is used as a specification technique for dynamic 
architectural reconfigurations in Wermelinger and Fiadeiro (2002), using the algebraic 
framework CommUnity. Hirsch uses graph transformations over hypergraphs (2003) to 
specify runtime interactions among components, reconfigurations, and mobility in a given 
architectural style. A profile for reliability was designed for J2EE applications in Rodrigues, 
Roberts, Emmerich and Skene (2004). In Zheng, Jun and Yan (2005), a pattern-based 
specification and runtime validation approach is presented for interaction properties of web 
services using a semantic web rule language (SWRL). GROOVE (Graphs for Object-
oriented Verification, 2007) is a project centered around the use of simple graphs for 
modeling the design-time, compile-time, and runtime structure of object-oriented systems; it 
also focuses on graph transformations as a basis for model transformation and operational 
semantics. This entails a formal foundation for model transformation and dynamic 
semantics, and the ability to verify model transformation and dynamic semantics through an 
(automatic) analysis of the resulting graph transformation systems—for instance using 
model checking.  
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The techniques described above such as model checking and graph transformations 
can benefit several steps of our methodology. In Step 2 these techniques can be used to 
derive dependability contracts addressing reconfiguration, topology and connections 
properties and constraints at the system and subsystem levels. In Steps 3 and 4, these 
techniques can be used in combination with other symbolic analysis techniques and testing 
techniques for verifying the structure of the architecture and the dependability contracts. 
These techniques can also provide useful information about the various sources of 
interference between the target components and the host system, and can help determine 
suitable and alternate approaches to avoid those interference sources.  

However, designers have traditionally sought alternatives to runtime change, 
especially for safety-critical applications such as combat systems. Several reasons account 
for this: 

1. It is usually avoidable. Runtime change is not a critical aspect of many software 
systems, and several techniques have been devised to circumvent the need for 
runtime change altogether. Regularly scheduled downtimes, functional redundancy 
or clustering, and manual overrides are all examples of such techniques. 

2. It increases risk. System integrity, reliability, and robustness are more difficult to 
ensure in light of runtime change. 

3. It increases cost. There is typically a marked performance overhead associated with 
supporting runtime change. Additionally, few techniques have limited expertise; and 
a lack of proven techniques for supporting runtime change exasperates engineering 
costs. 

Although “plug and fight” has been articulated as a goal, in the near term 
reconfiguration is likely to be more constrained and less agile due to weapons certification 
and doctrine issues. 

Conclusion  

This paper explores methods for test and evaluation of flexible systems with open 
architectures, and proposes an approach for substantially reducing the amount of testing 
necessary for dependable reconfigurable systems. The approach involves augmenting open 
architectures with measurable dependability properties associated with the system as a 
whole as well as dependability properties associated with slots for replaceable subsystems. 
It also involves augmenting testing with other kinds of quality-assurance methods. These 
additional methods include static checks for non-interference properties. The purpose of 
these checks is to ensure that components that work correctly in isolation will continue to do 
so in the context of a given dependable open architecture. In the long term, this approach 
should eliminate the need for integration testing after each reconfiguration, and in the short 
to medium term, it should substantially reduce the amount of integration testing required 
after reconfiguration.  
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Context
• The Navy is moving towards an Open Architecture (OA) paradigm 

– Joint interoperable systems that adapt and are built using open interfaces, 
open design principles, and open architectures

• FORCEnet – the Navy’s network centric concept of operations
– The viability, affordability and sustenance of FORCEnet necessitates an 

architecture that is fully compliance with OA technology 
– The development of OA within FORCEnet will result in a superior, adaptive, 

“plug and fight” capability for the modern war-fighter
• Expected long term benefits from Navy OA

– Business benefits: 
• Flexible acquisition strategies and contracts that enable the Navy to reuse 

software, easily upgrade systems, and share data throughout the enterprise
– Technical benefits: 

• Layered and modular open architectures that facilitate portability, maintainability, 
interoperability, upgrade-ability and long-term supportability
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Problem Statement
• Our preliminary investigations indicate that current methods for

achieving dependability in Open Architectures are insufficient
– Navy is currently able to deliver open architecture-based systems 

• However, known methods for achieving dependability with OA are expensive and 
not clearly understood

– According to Navy and other experience, traditional approaches to testing 
are usually unsuitable in open environments

• They are too expensive, take too long and lack agility to react to changes during 
acquisition

• Have to be repeated after every change
• Typical testing assumptions are not valid for Open Architectures

– Conventional methods for testing require that the environment of a typical 
system is fixed and known in detail to the quality assurance team at test 
and evaluation time

• Conventional testing is strongly context dependent
– The effectiveness of testing is very sensitive to the expected operating 

environment, which is unknown for reusable subsystems
– The majority of failures in software systems are due to requirements and 

specification errors, and commonly show up after a subsystem has been 
moved to a different environment
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Objectives
• Reduce testing cost

– Reduce the need for re-testing
– Eventually eliminate integration test after every reconfiguration

• Make testing more effective by augmenting it with other quality 
assurance methods
– Develop conceptually new and different testing methods to achieve 

dependability in Navy OA systems in presence of reuse, 
reconfiguration, changes and unpredictable environments

• Enable Persistent Open Architectures
– The architecture should not have to change or be retested every 

time the system configuration changes
– All architecture changes should be compatible extensions

• Avoid retesting previously existing parts



5

Challenges for DoD Testing Approaches
• Navy systems are subject to frequent changes 

– E.g., Many Navy systems seek to provide migrating services and 
reconfiguration of service oriented architectures (SOA)

– Architectural changes impact Key Performance Parameters (KPP), 
availability and other system requirements

• Scenario-based testing is commonly used
– Dependent on a particular system configuration and environment
– Does not currently deal with system modularity
– When the system configuration or environment changes, the 

designed test cases, scenarios and operational profiles also need 
to be changed. 

• A shift from scenario based testing to architecture based testing 
is needed 
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Complexity of testing OA
• An architecture is related to a family of systems, while a design is 

traditionally associated with a single instance of a system
• Assembly of plug compatible components leads to many system 

configurations
– Slots in an open architecture can be filled by different subsystems

• The number of choices for each slot multiplied together lead to an 
astronomical number of possible configurations for Navy systems

– Can include new components that did not exist when the 
architecture was designed

Dependable
configurations

Tested
configurations

Known
configurations

Non-dependable &
unknown

Non-dependable & 
untested

• Unbounded number of 
configurations
– An unpredictable number of 

new subsystems can be 
created in the future

– It will be impossible to test all 
configurations

– A majority of the configurations 
will not be tested at all
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Solution Approach
• Refine the open architecture concept to support system 

development and testing with interchangeable software parts

• A Dependable Open Architecture should include:
– Not only components and connections but also constraints

expressing the most important dependability properties
– Links to requirements, capabilities and standards
– Variable parameters – KPP’s / features  
– Components and connectors should be swappable within 

compatibility groups defined by testable dependability properties

• Apply testing at the architectural level, not only at the system
implementation level
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Solution Approach
• The proposed method is globally decomposed into four major 

steps:

S1 S2

C1 C2

R

S12

S1

R

S2

S12

C1

C2

2 2

3

3

3

4

Requirements

Standard for Component 1

Standard for Component 2

Standard for connection between 
components 1 and 2

Component 1

Component 2

1

1

1

2

3

4

Test Components vs. Standards

Verify Architecture vs. 
Requirements & Standards 
Ensure non-interference among 
components

1 Formulate dependability contracts

5 Monitor environment assumptions

5
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Solution Approach
• Step 1: Identification of dependability contracts

– System wide guarantees and assumptions
• Dependability properties that must hold in all configurations at the system level
• Primarily technical constraints rather than legal documents

– Intended to be checkable/testable via software, also at reconfiguration or runtime
• Improved methods for requirements determination, analysis, representation and 

allocation might be required
– Component requirements

• Component-level dependability contracts for the subsystems and connectors of 
the architecture

• Constraints apply to the architectural connection patterns and subsystem slots 

• Step 2: Testing components vs. standards
– Test each subsystem and connector against its dependability contract
– Automated process to enable sufficient large sets of test cases for 

statistically significant conclusions about desirable dependability levels
– Cost is proportional to the number of components, not number of 

combinations
– Must be done once for each version of each atomic component
– Well-known methods and techniques available

C1

S1

1
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Solution Approach
• Step 3: Verify architecture vs. requirements 

and standards 
– Check the system-wide dependability 

properties in all possible configurations
vs. the structure of the architecture and 
the dependability contracts for subsystems and connectors

– One-time process that uses symbolic analysis techniques

• Step 4: Ensure non-interference among components
– Check components for non-interference

• Ensure components working correctly in isolation will continue to do so 
when they are connected

– Computer-aided process
– Some known methods and techniques 

S1 S2

R

S12

2

2

2

C1 C2

3



11

Solution Approach
• Step 5: Monitor Environment Assumptions 

– Formulate assumptions about the environment as constraints 
attached to the architecture and components

– Check constraints after reconfiguration, e.g., resource limits, 
schedulability, etc.

– Operating environment assumptions checked by runtime 
monitoring, e.g., Built-In-Test(BIT) technology used in DoD systems

• E.g., Patriot Missile was not supposed to operate for more than 8 hours 
continuously

C
5
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Example: craft position control subsystem
• Architecture

– Two component slots
• Software driver for a position sensor (can be filled with a variety of sensors, such 

as GPS, inertial, VOR/DME, etc., )
• Control software module for an autopilot (can be filled with different control 

algorithms)
– One connector 

• Carries information 
about the current 
craft position

• Objective
– Keep the platform on 

course
• Dependability contracts

– Tolerances for the 
sensor accuracy and the 
allowable time delay 
for transmitting 
the position 

– To be fulfilled by any 
acceptable subsystem 
configuration

Subsystem dependability contract
position.error ≤ max.error,
position.delay ≤ max.delay,
…

own craft
position autopilot

Overall dependability contract

| actual.position – planned.position | 
≤ navigation.tolerance

position
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Acquisition Process Implications
• Requirements analysis needs to span the entire problem 

domain and system life, not just individual versions of the 
System of Systems
– Same architecture must support all future versions
– Planned control of variation via ranges for parameters/features

• Re-orient development processes toward Design-to-Tolerances
– Currently oriented  towards Design-to-Fit, Test-to-Fit

• The architecture as a whole needs authority / priority
– Responsible organization
– Global system standards authority
– Manage accountability for subsystems
– Empower via change control, acceptance testing, budget control
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Acquisition Process Implications
• Architecture development / QA needs substantial 

time/resources/technology development
– Must be included in plan from the start
– More detailed/precise standards and analysis needed

• New QA technologies needed
– Some known in labs but not used currently
– Tailoring/improvement may be needed for practical use
– Some areas need new methods to reach long term goals
– Will need tech transfer and training
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Conclusions
• New approach to quality assurance is better for achieving 

Dependable Open Architecture
– Support rapid reconfiguration without compromising dependability

while remaining economically viable
– Applies to Test & Evaluation in Navy Open Architecture initiative

• Benefits of the proposed methodology:
– Reduction of testing and limited scope for retesting after changes
– Assurance of dependability

• Assurance that all possible configurations derived from the architecture 
can satisfy the stated dependability requirements

• Enables agile dependable reconfiguration and on-the-fly “plug and fight”

• Overall, the proposed methodology will enable achieving 
dependability in Navy OA systems in presence of reuse, 
reconfiguration, changes and unpredictable environments
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Related Work
• As far as we know, there is no similar approach proposed in the 

related literature
• Comparison with Navy’s testing approaches

– Guidelines for testing are scarce and generic, and mainly rely on 
scenario-based approaches

– E.g., testing recommendations in OACE
• Functional and performance testing vs. specified system requirements 

organized as test cases and scenarios 
• Concept of “virtual homogeneity” to facilitate testing by identifying 

compatibility groups of sub-systems performing similarly 
(We define these via dependability constraints and slot standards)

• Concepts of “tree of subsystems” and “aggregations of components”
with no (considerable) interaction between choices of configurations for 
applying test cases 

• Schedulability analysis for ensuring that any configuration is 
schedulable
(A kind of non-interference check)
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Related Work
• Comparison with component based testing

– Can be used in our methodology for testing components vs. 
standards 

• Traditionally performed by a component’s developer before release to 
assure quality (white-box testing approach)

• Also used by system integrators to check that a component works 
correctly in a host system (black-box testing approach) 

– Certification strategies based on component testing
• Combination of black-box testing, system-level fault injection and 

defense protection through wrapping (Voas) 
– Approaches to make component data visible for testing

• Components are usually acquired as black-boxes without access to 
data necessary for (integration) testing

• Reflective techniques can help access the required data (Salles)
– Techniques based on formal methods

• Model checking and theorem proving are traditional formal techniques 
used to test and verify components’ correctness vs. specifications
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Related Work
• Comparison with runtime software reconfiguration

– Used in service-oriented architectures (SOA), air-traffic control 
systems, telephone switching systems, high-availability public 
information systems, etc.

– Variety of technology for Dynamic Software Architectures
• Reconfigurable ADLs (e.g., Dynamic Wright), programming languages 

(e.g., Lisp, Smalltalk, Haskel), dynamic linking libraries, dynamic object 
technology (e.g., CORBA), etc.

– Techniques for developing reconfigurable systems
• Graph transformation methods, hypergraphs, grammar oriented 

programming (GOP), grammar oriented object design (GOOD), etc.
– Techniques for checking reconfigurable systems

• Usually applied to static configurations (model checking, conformance 
testing, etc.)

• Runtime monitoring techniques also used
– Several steps of our approach can benefit from these techniques 

• E.g.: derivation of dependability contracts for reconfiguration, topology 
and connections; verification of the structure of the architecture, 
identification of sources of interference, etc.
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